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Abstract

This article examines alternate vibration isolation measures for a multi-dimensional system. The isolator
and receiver are modelled by the continuous system theory. The source is assumed to be rigid and both
force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and
the mobility synthesis method is adopted to describe the overall system behavior. Inverted ‘L’ beam and
plate receivers are employed here to incorporate the contribution of their in-plane motions to vibration
powers and radiated sound. Multi-dimensional transmissibilities and effectivenesses are comparatively
evaluated along with power-based measures for the inverted ‘L’ beam receiver and selected source
configurations. Further, sound pressures radiated from the inverted ‘L’ beam receiver are calculated and
correlated with power transmitted to the receiver. Interactions within the ‘L’ beam receiver are also
analyzed and measures that could identify dominant transfer paths within a system are examined. Sound
measurements and predictions for the inverted ‘L’ plate receiver demonstrate that a rank order based on
free field sound pressures, at one or more locations, may be regarded as a measure of isolation performance.
Measured insertion losses for sound pressure match well with those based on computed results although
further study is needed in relation to some discrepancies shown in the results. Finally, several emerging
research topics are identified.
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*Corresponding author. Tel.: +1-614-292-9044; fax: +1-614-292-3163.

E-mail address: singh.3@osu.edu (R. Singh).

0022-460X/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00105-6



1. Introduction

Force or velocity transmissibility and related concepts are widely used, mostly for uni-
directional motions [1–5] but have been extended to multi-dimensional systems [6]. Also, the force
or velocity effectiveness term, the ratio of transmitted force or velocity with an isolator to the one
without the isolator, has been employed for both uni-directional [1,2,4] and multi-dimensional
problems [7,8]. However, for a multi-dimensional problem, the units of translational and
rotational quantities are not compatible [9–11]. For this reason, the concept of vibration power
has been used to assess transmission to receivers [11–16]. Application of such measures includes
structural discontinuities [17,18], vibration isolators [11–16], and bearings [19]. The transmission
efficiency, the ratio of input vibration power to transmitted power, has been studied for
propagating waves at the interface of infinite structures [17,18]. Input and transmitted powers
have also been compared for some finite structures [15,20,21].
For a multi-dimensional system, strong interactions occur between the coupled degrees of

freedom. For example, Cremer and Heckle [17] claim that the moment mobility must be dealt with
via a matrix in the presence of flexural motions. They have also explained that the coupling
mobility in flexural motions may suppress the bending waves under some conditions. This concept
has been implemented to attenuate vibration input to a single structure [9]. Further, some
separation of transfer paths has been experimentally investigated [22]. Nonetheless, a proper
quantification or interpretation of dynamic interactions that occur among coupled structural
paths has not been addressed. Furthermore, the quantification of structure-borne energy and
source strengths still remain as key obstacles in many cases [23–27]. Satisfactory resolution of such
research issues would require appropriate vibration transmission measures. However, such
measures for a multi-dimensional system are not well understood and often left to the discretion
of user [1,7,28]. In this article, we address this particular issue with emphasis on a multi-
dimensional isolator (of distributed parameters) in the presence of a compliant receiver.

2. Problem formulation

The problem is defined via Figs. 1 and 2, in the context of source, path (isolator) and receiver.
The scope of this study is limited to the analysis of a linear time-invariant (LTI) system with a
single isolator (defined in terms of distributed parameter). In this multi-dimensional system, the
source is described by a rigid body and two alternate compliant receivers, namely the inverted ‘L’
beam and plate structures, are utilized for analytical and experimental studies. Harmonic force
and moment excitations are applied to the source, up to 2.5 kHz. Mobilities of each component
are analytically or computationally obtained, and then the mobility synthesis method is employed
to predict the harmonic response of the overall system, based on the formulation reported in our
earlier article [29]. Source characteristics that have been previously investigated are also utilized
here [12]. Chief objectives of this study include: (1) Examine alternate measures of vibration
isolation performance for a multi-dimensional system and quantify the vibration transmission for
several system configurations. (2) Calculate and measure the sound generated from the ‘L’
structure receiver and correlate results with vibration isolation measures. Key concepts will be
illustrated via experimental and analytical studies on selected isolators.
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3. Vibration isolation measures

3.1. Multi-dimensional formulation

Interfacial forces ðFÞ in Fig. 1 are as follows when an external force vector is applied at location
1. Note that aij ; bij and cij represent the mobility matrices of source, path and receiver,
respectively; a detailed analysis has been reported in an earlier paper by the same authors [29].
Here, all formulations are in the frequency domain though the ubiquitous (o) term has been
dropped for the sake of brevity:

FP2 ¼ ½½a22 þ b22� � b23½b33 þ c33�
�1b32�

�1a21FS1; ð1aÞ

Fig. 1. Problem formulation for vibration transmission: (a) multi-dimensional path isolator; (b) source–path–receiver

system and their mobility matrices a; b and c; (c) vibration system without isolator. Here, F and V are vectors.
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FR3 ¼ ½½b33 þ c33� � b32½a22 þ b22�
�1b23�

�1b32½a22 þ b22�
�1a21FS1: ð1bÞ

Also, velocities ðVÞ at intermediate locations when an external force is applied at 1 are as follows
where M is the system mobility matrix:

V1 ¼M11FS1 ¼ ½a11 þ a12½b23½b33 þ c33�
�1b32 � ½a22 þ b22��

�1a21�FS1; ð2aÞ

V2 ¼M21FS1 ¼ ½a21 � a22½½a22 þ b22� � b23½b33 þ c33�
�1b32�

�1a21�FS1; ð2bÞ

V3 ¼M31FS1 ¼ c33½½b33 þ c33� � b32½a22 þ b22�
�1b23�

�1b32½a22 þ b22�
�1a21FS1: ð2cÞ

3.2. Force and velocity transmissibility matrices

The multi-dimensional force transmissibility matrix ðTRF Þ can be defined from Eq. (1b) and
likewise the velocity transmissibility matrix ðTRV Þ can be developed using Eqs. (2a) and (2c) as
follows where/represents a quotient operation for matrices:

TRF ¼ FR3=FS3 ¼ ½½b33 þ c33� � b32½a22 þ b22�
�1b23�

�1b32½a22 þ b22�
�1a21; ð3aÞ

TRV ¼ VR3=VS3 ¼M31M
�1
11 : ð3bÞ

Fig. 2. Configuration of the analytical vibration isolation system: (a) system with an inverted ‘L’ beam receiver; (b)

system with an inverted ‘L’ plate receiver; (c) a cylindrical isolator with vibration transmission components; (d) isolator

location ½x; y; z� on the working plane of a cubic rigid body source: case 1 ¼ ½0; 0; 0�; case 2 ¼ ½0;�hy=2; 0�; case

3 ¼ ½�hx=2;�hy=2; 0�; case 4 ¼ ½�hx=2; 0; 0�:
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For uni-directional motions, the transmissibility ðTRÞ is a non-dimensional scalar quantity, and
therefore the diagonal terms of TR are non-dimensional. But, the units of off-diagonal terms vary
since each off-diagonal component represents a specific coupling between related forces and
motions. Further, the modified force transmissibility matrix ðTRb

F Þ can be defined as follows by
using Eq. (1b) for FR3 and substituting the null matrix for b and c into Eq. (1a) for Fb

P2; here the
superscript b represents the blocked force [2]:

TRb
F ¼ FR3=F

b
P2 ¼ ½½b33 þ c33� � b32½a22 þ b22�

�1b23�
�1b32½a22 þ b22�

�1a22: ð4Þ

Similarly, the modified velocity transmissibility matrix ðTRf
V Þ can also be introduced as follows by

using Eq. (2c) and noticing V
f
S2 ¼ a21FS1; here the superscript f denotes free velocity at the source

output [2]:

TR
f
V ¼ VR3=V

f
S2 ¼ c33½½b33 þ c33� � b32½a22 þ b22�

�1b23�
�1b32½a22 þ b22�

�1: ð5Þ

Again, the units of off-diagonal terms in modified transmissibility matrices vary even though the
diagonal terms are non-dimensional.

3.3. Force and velocity effectiveness matrices

Multi-dimensional representation of the effectiveness concept can be extended to isolators that
are described by uncoupled spring elements [7]. To illustrate this measure, consider the interfacial
force and response at location 3 for a system without any isolator. These can be obtained by
synthesizing only the source and receiver (a and c); details may be found in literature [29]:

FR3;without ¼ ½a22 þ c33�
�1a21FS1; VR3;without ¼ c33½a22 þ c33�

�1a21FS1: ð6a;bÞ

The force effectiveness matrix NF is obtained by using Eqs. (1b) and (6a) for the with and without
isolator cases, respectively:

NF ¼F3;with=F3;without

¼ ½½b33 þ c33� � b32½a22 þ b22�
�1b23�

�1b32½a22 þ b22�
�1½a22 þ c33�: ð7Þ

Further, relating Eq. (1c) to Eq. (6b) leads to the velocity effectiveness matrix NV:

NV ¼V3;with=V3;without

¼ c33½½b33 þ c33� � b32½a22 þ b22�
�1b23�

�1b32½a22 þ b22�
�1½a22 þ c33�c

�1
33 : ð8Þ

3.4. Vibration power

The time-averaged vibrational power input PIN to a structure for a uni-directional motion is
defined as follows, given a point harmonic excitation Feiot and the resultant velocity Veiot at the
driving point where F and V are complex-valued amplitudes:

PINðoÞ ¼
o
2p

Z 2p=o

0

F ðtÞV ðtÞ dt ¼ 1
2
jF j jV j cos f

¼ 1
2
Re½ *FðoÞ *V	ðoÞ� ¼ 1

2
Re½ *VðoÞ *F	ðoÞ�: ð9Þ
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Here, Re and superscript * denote the real value and the conjugate of a complex quantity,
respectively. Similarly, the harmonic power P at any location is as follows, given harmonic excitation
Feiot and response velocity Veiot vectors where the superscript T denotes the transpose of a vector:

PðoÞ ¼ 1
2 Re½FTðoÞV	ðoÞ� ¼ 1

2 Re½VTðoÞF	ðoÞ�: ð10Þ

Power transmitted by each path ðiÞ at a connection of interest is related to the mobility matrix ðMÞ of
that component by

Pi ¼ 1
2
Re½FiV

	
i � ¼

1

2

X
j

Re½FiF
	
j M	

ij �; ð11Þ

where Fi and Fj are the ith and the jth components of excitation at the junction and Mij represents the
ij mobility component which relates the ith velocity and the jth force where M is the driving point
mobility matrix of subsequent structure. For the sake of illustration, consider a planer motion that is
represented by F ¼ ½fx fy qz�Teiot and V ¼ ½vx vy wz�Teiot: Total power ðPTotalÞ transmitted to the
structure by force ðfx; fyÞ and moment ðqzÞ components is

PTotal ¼ 1
2
jfxj2 Re½Mxx� þ 1

2
Re½fxf 	

y M	
xy� þ

1
2
Re½fxq	

zM	
xz�

þ 1
2
Re½fyf 	

x M	
yx� þ

1
2
jfyj2 Re½Myy� þ 1

2
Re½fyq	zM	

yz�

þ 1
2
Re½qzf

	
x M	

zx� þ
1
2
Re½qzf

	
y M	

zy� þ
1
2
jqzj2 Re½Mzz�: ð12Þ

Therefore, the input ðINÞ power at driving point ðkÞ and the transmitted ðTRÞ power at connection
point ðlÞ are, respectively,

PIN ¼ 1
2
Re½FTINV

	
k� ¼

1
2
Re½FT

IN ½MkkFIN �	�; ð13aÞ

PTR ¼ 1
2
Re½FT

TRV
	
l � ¼

1
2
Re½FTTR½MlkFIN �	� ¼ 1

2
Re½FT

TR½MllFTR�	�; ð13bÞ

whereMkk andMlk are the mobility matrices of the combined structure, andMll is the driving point
mobility matrix of the subsequent structure only. Since several coupling mobility terms between forces
and moments exist, each component of the transmitted power may be positive or negative. However,
the power components that are related to the diagonal terms in the driving point mobility of a receiver
are always positive since the real part of the diagonal terms in the driving point mobility and the
mean-square transmitted force are always positive. Note that the power component for each degree of
freedom is interrelated to other power components since the coupled terms in Eq. (12) are associated
with two motion or excitation variables in different degrees of freedom. In our study, the sum of
power components that are related to coupling mobility of a receiver, as given by Eq. (12), is defined
as the coupling power and such coupling powers may be positive or negative.

3.5. Mean-square force and velocity C2
W

The mean-square force C2
F and velocity C2

V at the interface (location 3 in Fig. 1) between
isolator and receiver for uni-directional motions are, respectively:

C2
F ¼ /F2

3 ðtÞSt ¼
o
2p

Z 2p=o

0

F2
3 ðtÞ dt ¼ 1

2 Re½ *F3
*F	
3� ¼

jF3j2

2
; ð14aÞ
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C2
V ¼ /V2

3 ðtÞSt ¼
o
2p

Z 2p=o

0

V2
3 ðtÞ dt ¼ 1

2
Re½ *V3

*V	
3� ¼

jV3j
2

2
: ð14bÞ

Here, / St and j j represent time-averaged and absolute values respectively. TheC2
F andC2

V terms
are meaningful for uni-directional motions but their relative comparisons are inappropriate for
multi-dimensional motions since the units of C2 terms are not compatible between translational
and rotational directions. For instance, it is not suitable to compare the mean-square force ðN2Þ
and the mean-square moment ðN2 m2Þ: For this reason, the concept of a weighted mean-square
quantity C2

W that can hold equivalent units for dissimilar variables is proposed via Eq. (15). By
employingC2

W ; a rank ordering of transfer paths is feasible for multi-dimensional motions. In this
study, we choose the driving point mobility M (or its reciprocal that is impedance Z),
corresponding to the force (or velocity) variable, as a weighting factor. By adopting the M or Z of
receiver at location 3, define the C2

WF and C2
WV for uni-directional motions as

C2
WF ¼ 1

2 Re½ *F3
*F	
3M33� ¼

jF3j2

2
Re½M33�; C2

WV ¼ 1
2 Re½ *V3

*V	
3Z33� ¼

jV3j2

2
Re½Z33�: ð15a;bÞ

The C2
WF and C2

WV have the units of power and are always positive since the real parts of driving
point mobility and impedance are positive. Further, the C2

WF (or C2
WV ) represents the power term

consisting of force (or moment) and corresponding velocity. The total weighted mean-square
force C2

WF ;Total and velocity C2
WV ;Total can be defined at multi-dimensional interfacial location (3)

in Fig. 1 as

C2
WF ;Total ¼

1
2
Re½ *F

T

3 diag½M33� *F
	
3�; C2

WV ;Total ¼
1
2
Re½ *V

T

3 diag½Z33� *V
	
3�: ð16a;bÞ

For a planer motion example that was presented in the previous section, the C2
WF ;Total and

C2
WV ;Total are expanded as

C2
WF ;Total ¼

1
2jfxj

2 Re½Mxx� þ 1
2jfyj

2 Re½Myy� þ 1
2jqzj

2 Re½Mzz�; ð17aÞ

C2
WV ;Total ¼

1
2
jvxj

2 Re½Zxx� þ 1
2
jvyj

2 Re½Zyy� þ 1
2
jwzj

2 Re½Zzz�: ð17bÞ

Therefore, C2
WF ;Total is the sum of power components that are related to the driving point

mobilities of the receiver, and C2
WV ;Total is the sum of power components that are related to the

driving point impedances of the receiver. Also, the individual mean-square force and velocity
terms are scalar quantities.

3.6. Structure-borne or airborne noise measures

For two adjacent infinite structures, the transmission efficiency G (a non-dimensional scalar
quantity) has been defined as the ratio of transmitted power PTR to incident power PIN [17,18].
For a finite structure, G can be defined in the same fashion as

G ¼
PTR

PIN

: ð18Þ

The effectiveness XP of vibration power (a non-dimensional scalar quantity) can be defined as
follows where ‘‘with’’ implies the net power transmitted to receiver with an isolator and ‘‘without’’
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refers to the case when the source is rigidly connected to the receiver:

XP ¼
PTR;with

PTR;without

: ð19Þ

Insertion losses ðILÞ for force and velocity at the receiver structure or sound pressure ðpÞ in the
acoustic medium are defined as follows where C2 is mean-square value of relevant variable Qi:

ILQi
¼ 10 log10

C2
Qi ;A

C2
Qi ;B

 !
dB: ð20Þ

One could choose Qi to be FiðoÞ; ViðoÞ or piðoÞ; etc. at location i. Further, A and B represent two
different physical systems and therefore the IL values are always relative. The aforementioned
vibration isolation measures are summarized in Table 1 for multi-dimensional motions; some
explanations are also provided along with citation to literature.

Table 1

Summary of frequency-domain vibration isolation measures for multi-dimensional motions

Measure Definition as a function of o

Force and motion transmissibilities [6,8] TRF ¼ FR3=FS1 and TRV ¼ VR3=VS1

Modified force and motion transmissibilities TRb
F ¼ FR3=F

b
P2 and TR

f
V ¼ VR3=V

f
S2

Force and motion effectivenesses [7] NV ¼ V3;with=V3;without and NF ¼ F3;with=F3;without

Mean-square force and velocities at receiver input C2
F ¼ /F2

3 ðtÞSt ¼
1
2
Re½ *F3

*F	
3� ¼

jF3 j2

2
and C2

V ¼

/V2
3 ðtÞSt ¼

1
2
Re½ *V3

*V	
3� ¼

jV3 j2

2

Weighted mean-square force and velocities at receiver input C2
WF ;Total ¼

1
2
Re½ *F

T

3 diag½M33� *F
	
3� and

C2
WV ;Total ¼

1
2
Re½ *V

T

3 diag½Z33� *V
	
3�

Power transmitted to receiver input [9–16,19–21] PTRðoÞ ¼ 1
2
Re½FTV	� ¼ 1

2
Re½VTF	�

Efficiency of vibration power transmitted to receiver input

[15,20,21]
GðoÞ ¼ PTR

PIN

Effectiveness of vibration power transmitted to receiver

input [20,21]
XPðoÞ ¼

PTR;with

PTR;without

Vibration or sound amplitudes at the receiver F ðoÞ; V ðoÞ or pðoÞ
Insertion loss [1,2]

ILQi
¼ 10 log10ð

C2
Qi ;A

C2
Qi ;B

Þ dB

Note:

1. Subscripts 1, 2 and 3 are input, interfacial and output locations of components as shown in Fig. 1.

2. Operator ‘=’ is a quotient operation for vectors.

3. Superscripts b and f represent blocked and free boundary conditions at the source output, respectively.

4. Operators /St and diag represent time averaged quantity and diagonal matrix of the original matrix, respectively.

5. Subscripts ‘with’ and ‘without’ represent a system with an isolator and without any isolator, respectively. Refer to

Figs. 1(b) and (c).

6. Subscripts IN and TR represent input at source and transmitted power at receiver input, respectively.

7. Qi ¼ piðoÞ; FiðoÞ or ViðoÞ at i: Also, A and B represent two different physical systems.
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4. System with an inverted ‘L’ beam receiver

4.1. System configuration

Various vibration isolation measures are examined for an analytical isolation system with the
inverted ‘L’ beam receiver of Fig. 2(a). Note that longitudinal motion of one beam is coupled with
flexural motion of the other and thus both contribute to sound radiation. The four isolator
attachment cases of Fig. 2(d) are analyzed up to 3 kHz. These cases provide several transmission
configurations even though cases 3 and 4 are statically unstable and case 1 is physically
meaningful only for three-dimensional motions in terms of its implementation. Nonetheless,
vibration transmitted to the receiver is strongly affected by the mount location, and thus by the
free velocity of source [12]. Harmonic moment excitations are applied at the mass center of the
source for vibratory power-based and sound field measures. Force excitation cases are also
examined for transmissibility and effectiveness of force or velocity.
The mobility matrix M of a rigid body, between any two locations i and j; can be determined

from the inertia properties at mass center G and geometric information. Details may be found in
Ref. [29]. Using the small angle ðyÞ approximation (sin yEtan yEy and cos yE1), the resulting
expressions are given by

Vi

Vj

" #
¼

Mii Mij

Mji Mjj

" #
Fi

Fj

" #
¼

TT
i MGGTi TT

i MGGTj

TT
j MGGTi TT

j MGGTj

" #
Fi

Fj

" #
; ð21aÞ

MGG ¼
Mv;GG 0

0 Mw;GG

" #
; ð21bÞ

Mv;GG ¼ diag
1

mjo
1

mjo
1

mjo

� �	 

; Mw;GG ¼

1

jo

Im;xx �Im;xy �Im;xz

�Im;xy Im;yy �Im;yz

�Im;xz �Im;yz Im;zz

2
64

3
75
�1

; ð21c;dÞ

Ti ¼
I 0

Ri I

" #
; Ri ¼

0 �hzi hyi

hzi 0 �hxi

�hyi hxi 0

2
64

3
75: ð21e; fÞ

Here, m and I are mass and inertia of a rigid body and h represents a reference location within the
rigid body with respect to G: The isolator is connected to the inverted ‘L’ beam at 0:75cH ; where
cH is the length of the horizontal beam. This off-center location highlights the effect of coupling
mobility of receiver. Note that such a coupling mobility term does not exist for a centrally driven
beam (with symmetric boundaries) and for an infinite beam. The isolator of Fig. 2(c) is modelled
using the Timoshenko beam theory to describe flexure along with the wave equation for
longitudinal motion. Thus, the effects of shear deformation and rotary inertia are included.
Mobilities of the Timoshenko beam have been analyzed for two types of solution in an earlier
paper by the same authors [21]; the resulting formulations are used here. Material properties such
as shear modulus ðGÞ; the mass density ðrÞ and the Poisson ratio ðnÞ of the isolator are listed in
Table 2. The modulus of elasticity E for the rubber material is found from the relation
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E ¼ 3Gð1þ QT2Þ; where Q is a numerical constant and T is the isolator shape factor [3]. For a
circular rubber cylinder, Q is 2 and T is equal to 2r=ð4cÞ; where radius ðrÞ and length ðcÞ values are
listed in Table 2 [3]. Also, a frequency-invariant loss factor Z of 0.1 is assumed to incorporate
damping within the isolator. It is included in the calculation with the complex-valued modulus of
elasticity as *E ¼ Eð1þ jZÞ: Also, a loss factor of 0.002 is used to represent a lightly damped
structure and included in *E:
The dynamic behavior of the inverted ‘L’ beam is obtained by synthesizing the mobilities of

each beam. Harmonic responses of the finite beam in flexure are as follows, where kB is bending
wave number and AB; BB; CB and DB are arbitrary constants:

Y ðx; tÞ ¼ Y ðxÞejot ¼ fAB sin½kBx� þ BB cos½kBx� þ CB sinh½kBx� þ DB cosh½kBx�gejot: ð22Þ

For a horizontal beam (designated as H) with one end clamped and the other end free, the above
is rewritten as follows, with reference to Fig. 3(a), when a harmonic force or moment excitation is

Table 2

Material properties and dimensions of the analytical system of Fig. 2(a)

Property or dimension Source (cubic rigid body) Isolator (circular beam) Inverted ‘L’ beam receiver

m (kg) 1 — —

E (MPa) — 16.2 6.688� 104

G (MPa) — 5 —

Z — 0.3 0.001

r (kg/m3) — 1000 2723

Dimensions (mm) c ¼ 50 c ¼ 30 r ¼ 12 c ¼ 400; b ¼ 100; t ¼ 5

(horizontal and vertical

beams)

Fig. 3. Sound radiation from an inverted ‘L’ beam receiver: (a) ‘L’ beam configuration and its mobilities; (b) acoustic

field point. Here, location 3 is interface of receiver with an isolator, and interface between beams H and V is denoted by

location 4.
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applied within the beam span:

Y1ðx; tÞ ¼ Y1ðxÞejot ¼ A1B½sin½kBx� � sinh½kBx�� þ B1B½cos½kBx� � cosh½kBx��ejot; ð23aÞ

Y2ðx; tÞ ¼ Y2ðxÞejot ¼A2B½sin½kBðcH � xÞ� þ sinh½kBðcH � xÞ��

þ B2B½cos½kBðcH � xÞ� þ cosh½kBðcH � xÞ��ejot: ð23bÞ

Here, Y1 and Y2 are the steady state responses of the beam over spans 0pxpxF and xFpxpcH ;
respectively, where xF and cH are the excitation location and length of the horizontal beam,
respectively. Unknowns A1B; B1B; A2B and B2B are obtained by applying boundary and excitation
conditions. Using the wave equation, the longitudinal velocity of a beam with one end clamped
and the other end free is as follows, where kB and S are longitudinal wave number and section
area, respectively [30]:

vx1ðx; tÞ ¼ vx1ðxÞejot ¼ jo
sin½kLx� cos½kLðcH � xf Þ�

SEkL cos½kLcH �
ejot; 0pxpxf ; ð24aÞ

vx2ðx; tÞ ¼ vx2ðxÞejot ¼ jo
sin½kLxf � cos½kLðcH � xÞ�

SEkL cos½kLcH �
ejot; xfpxpcH ; ð24bÞ

For a vertical beam of length cV (designated as V ) that is excited at the end of beam, mobilities
are also used from Ref. [30] and are not repeated here.
Next, driving point mobilities of inverted ‘L’ beam at interface with an isolator (location 3) are

obtained using the following, where cH; and cV are the mobilities of horizontal and vertical
beams, respectively, as shown in Fig. 2(a), and the subscripts after comma represent related
locations:

c33 ¼ cH;;33 � cH;;34½cH;;44 þ cV ;;44�cH;43: ð25Þ

Then, interfacial forces FR3 at location 3 are obtained by using Eqs. (1b) and (25) and by
employing the same a and b for source and isolator, respectively.

4.2. Vibration isolation measures using TR or X

Force and velocity transmissibilities ðTRÞ are computed using the inverted ‘L’ beam receiver,
with only one isolation configuration (case 2) of Fig. 2(d). Only non-dimensional diagonal terms
in transmissibility matrices are analyzed. The modified transmissibilities (TRb

F and TR
f
V ) are also

compared with their corresponding transmissibilities (TRF and TRV ) since the TRb
F and TR

f
V may

provide a better or convenient isolation measure. For example, there are cases such as in internal
combustion engines where direct force inputs are difficult to measure, and the TRb

F that employs
the blocked force may be considered as an alternative. Further, the effects of free velocity on
vibration transmission to receiver have been emphasized for a multi-dimensional isolation system
[12] and thus the TR

f
V that employs the free velocity may also be regarded as an important

isolation measure for multi-dimensional cases. In such cases, the relationships between the
modified and original transmissibilities need to be examined, and the comparison of such
transmissibility measures could yield a useful information. First, TRF and TRb

F spectra are shown
in Fig. 4. The axial and rotational components of TRF are almost the same as the corresponding
components of TRb

F over the entire frequency range. The lateral components of TRF and TRb
F
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also have almost the same spectral shapes but the lateral TRb
F is higher than the one of TRF :

Therefore, TRb
F may be regarded as an alternative to TRF for some cases (axial and rotational

components in this case) although one must exercise caution when replacing of TRb
F by TRF :

Next, the velocity TRV and modified velocity TR
f
V transmissibilities are shown in Fig. 5. The

differences between the TRV and TR
f
V components are more pronounced than the ones between

TRF and TRb
F : This is because the axial components of TRV and TR

f
V dominate over the entire

frequency range and the lateral components of TRV and TR
f
V are higher than the rotational

component of those. Also, the difference between lateral and rotational components is reduced in
the TR

f
V calculations.

Finally, the XF and XV effectiveness spectra are shown in Fig. 6. Unlike the TRV and TR
f
V ; the

lateral and rotational components of XV are almost the same and the lateral component of XF is
slightly larger than the rotational component of XF up to around 400Hz, as shown in Fig. 6.
Therefore, the difference between TRV and XV confirms that the TRV does not properly represent the
isolation effectiveness for the different motional directions, as known previously. However, similar to
TRV and TR

f
V ; it is observed that the axial component of XF or XV dominates beyond 100Hz.

4.3. Power-based vibration isolation measures

The four different cases of the isolator connection, as shown in Fig. 2(d), are investigated using
the same component parameters. Vibration power transmitted to the receiver is computed and
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analyzed up to 3 kHz. As mentioned earlier, each power component cannot be decoupled from
others because of coupling and therefore may be positive or negative. Vibration power
components ðPÞ that are normalized with respect to the total power ðPTotalÞ transmitted to the
inverted ‘L’ beam are shown in Fig. 7. Therefore, the normalized power components shown in this
manner add up to unity. However, it is seen from Fig. 7 that the normalized Ps exceed far from
unity because of coupling and exhibit somewhat complicated characteristics of the power
transmission process. Note that for the inverted ‘L’ beam receiver, the longitudinal motion of
beam H is coupled with the rotational motion of beam V, ultimately with bending motion of the
horizontal beam. Therefore, all coupling terms in the driving point mobility of the ‘L’ beam
receiver are non-zero and coupling powers exist between lateral (with respect to isolator) and
other directions. However, the coupling does not occur between longitudinal and other (bending)
directions of a single straight beam receiver. Fig. 7 shows that the rotational PR is dominant and
large negative power flows in the axial y (with respect to isolator) direction are observed for cases
1 and 2. This implies that there exists P flow from a receiver to an isolator in the axial direction.
Further, the lateral Pc of case 2 grows at higher frequencies. For cases 3 and 4, the axial PA is
dominant except certain frequencies (around 1 kHz), as shown in Figs. 7(c) and (d). At these
frequencies in cases 3 and 4, the PR dominates and the PA flows in reverse manner (from a
receiver to an isolator). Overall, Fig. 7 shows that the PA and PR spectra are almost symmetric
with respect to P=PTotal ¼ 0:5: This indicates that significant coupling occurs between the PA

(shear direction of horizontal beam receiver) and PR components. Although parts of these
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components ultimately cancel each other, all of these orthogonal components may be separately
considered in the analysis. For example, consider a system consisting of multiple uni-directional
paths. Like the case considered here, reverse (negative) P flows are expected to occur within
certain paths and frequencies since the transfer mobility can be positive or negative. Despite the
cancellation of coupling powers within some paths, negative or positive power flow through each
uni-directional path must be separately understood to properly design a vibration isolation system
for minimum structure-borne noise. Likewise, each path of a multi-dimensional isolator may be
analyzed independently. However, it may be useful to group and compare powers for the sake of
interpretation. For example, shear and rotational motions are associated with each other by the
relationship w ¼ dv=dx and f ¼ �dq=dx for a beam structure where v; w; f and q represent
translational and rotational velocities, force and moment, respectively. Therefore, in our study,
the bending PB is defined as the sum of the PA and PR components and it is compared with the
Pc in Fig. 8. The PB represents the powers in flexural motion of beam H. However, it should be
noted that, in general, this description of flexural motion is not appropriate since the receiver
dynamics is governed not only by a directly connected structure but also by subsequent structures.
Fig. 8(a) shows that the PB is dominant except around 300Hz and the Pc flows upward to an
isolator at higher o for case 1. Further, the PB and Pc dominate at lower and higher frequencies
respectively for case 2, and the PB dominates at all frequencies for cases 3 and 4, as shown in
Fig. 8(b). The negative Pc values of Fig. 8 indicate the existence of the coupling between
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longitudinal and bending motions of the ‘L’ beam receiver. As mentioned previously, the Pc

cannot be negative for a system with a single straight beam receiver. Overall, it can be seen from
Fig. 8 that strong coupling still exists between bending and lateral directions due to interactions
between receiver structures. In this study, the vibration transmission paths could be identified in a
more clear manner by grouping the power components in flexural motions. But, caution must be
exercised since the longitudinal motion of a receiver may exhibit strong coupling with its bending
motions unlike the ‘L’ beam case examined here. For example, the bending waves through an
isolator are typically converted to the longitudinal wave of a receiver, and grouping of flexural
motions of an isolator rather than the ones of a receiver may be more suitable in some application.
Future research should attempt to properly interpret the vibration transmission process and
related couplings, and an efficient analysis scheme must be sought via a better understanding of
the coupling process.
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Next, the weighted mean square force ðC2
WF Þ and coupling power that are normalized with

respect to PTotal are calculated and shown in Fig. 9. Recall from Section 3.4, that the coupling
power is designated as the sum of the power terms consisting of a force (or moment) and velocity
that is generated by the forces (or moments) in different directions. Further, the sum of the
C2

WF ;Total (or C
2
WV ;Total) and the coupling power is equal to the total power ðPTotalÞ transmitted to

the receiver. Fig. 9 shows that the rotational and axial C2
WF are dominant for cases 1 and 2 and

the axial C2
WF dominates for cases 3 and 4. Further, the lateral C2

WF becomes important as
frequency increases for case 2, like the P spectra in Fig. 8(b). The C2

WF of Fig. 9 also exhibits
strong power coupling phenomena. However, C2

WF does not provide any information on power
flowing in the reverse manner as seen in the P spectra since C2

WF is always positive. This can be
seen from the coupling power. The weighted mean-square velocity ðC2

WV Þ is also shown in Fig. 10.
The C2

WV spectra are quite different from the C2
WF for all cases. Note that C2

WF and C2
WV are the

same when a receiver is defined only in terms of a diagonal driving point mobility matrix such as
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an infinite beam or a finite beam (with symmetric boundaries) with the isolator connected at the
center. Like the C2

WF ; Fig. 10 shows that the rotational and axial C2
WV ’s are significant for all

cases. However, the lateral C2
WV becomes important over a relatively limited frequency range.

Further, stronger coupling terms are observed in Fig. 10 than in Fig. 9.
Total vibration powers PTotal transmitted to the ‘L’ beam receiver are compared in Fig. 11(a)

for the 4 location cases of Fig. 2(d) given unit (1Nm) moment excitation. It is observed that total
vibration powers for cases 3 and 4 are almost the same but these are higher than those for cases 1
and 2. Also, the transmitted power is lowest among the cases considered when the isolator is
attached to the mass center of the rigid body (case 1). The power efficiencies G are shown in
Fig. 11(b), and a rank order based on G is similar to the one given by PTotal : However, G in case 1
rises and is higher than the one for case 2 as o increases. Also, for all cases, overall characteristics
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of G rise as o increases even though the value of PTotal decreases. The power effectivenesses XP

are also shown in Fig. 11(c). The patterns for XP spectra do not exactly match with PTotal for the
cases considered. For example, The XP for case 3 is higher than the one of case 4 at low
frequencies but is lower at high o: Overall, one must properly select a power-based measure, given
the choice between force (or velocity) transmissibility and effectiveness terms. Further, the
differences between PTotal and G are expected since the source input powers of each case are
different although the excitation moment amplitude remains unchanged. Therefore, the source
characteristics also need to be identified to examine various design modifications. For example, G
is suitable when a source generating mechanism is clearly identified. Without a proper
understanding of such a source, PTotal must be evaluated for each design change.

500 1000 1500 2000 2500
-30

-20

-10

0

10

20

30
Ψ

W
V

 /
 Π

T
ot

al
Ψ

W
V

 /
 Π

T
ot

al

Ψ
W

V
 /

 Π
T

ot
al

Ψ
W

V
 /

 Π
T

ot
al

500 1000 1500 2000 2500
-30

-20

-10

0

10

20

30

500 1000 1500 2000 2500
-30

-20

-10

0

10

20

30

500 1000 1500 2000 2500
-30

-20

-10

0

10

20

30

Frequency (Hz) Frequency (Hz) 

1 

2 

4 

3 

(a) (b)

(c) (d)

(e)

Fig. 10. Weighted mean square velocity ðC2
WV Þ and coupling power normalized with respect to the total power

transmitted to an inverted ‘L’ beam receiver given moment excitation: (a) case 1; (b) case 2; (c) case 3; (d) case 4 as

shown in Fig. 2(d); (e) four mounting location cases as shown in Fig. 2(d). - - - - - - -, axial; ——, rotational; – - – - – -,

lateral; ???; coupling power.

R. Singh, S. Kim / Journal of Sound and Vibration 262 (2003) 419–455436



4.4. Sound radiation from receiver as a measure of vibration isolation

Sound pressure p at selected points in free field ð~dd Þ is calculated in order to examine its
relationship with vibration power transmitted to the receiver of Fig. 2(a). An inverted ‘L’ beam is
chosen as the chief radiating structure and it will incorporate contributions from longitudinal
and flexural structural powers. See Fig. 3 for more details of the system configuration. First,
interfacial forces FR4 between horizontal ðHÞ and vertical ðV Þ beams are obtained by using FR3
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as follows:

FR4 ¼ ½cH;;44 þ cV ;;44�
�1cH;43FR3: ð26Þ

Further, velocity distributions along x and y of beams H and V can be represented as follows:

VHðxÞ ¼ cH;x3ðxÞFR3 þ cH;x4ðxÞFR4; ð27aÞ

VV ðyÞ ¼ cV ;y4ðyÞFR4: ð27bÞ

Assume distributed line source on the beams, and the sound pressure at ~dd from a baffled harmonic
source is [31,32]

p ¼
Z L

0

jracaka

2pd 0ðxÞ
vðxÞbej½ot�kad 0ðxÞ�

� �
dx: ð28Þ

Here, d 0 is a distance between the vibrating point on the beam and the observation point ~dd ; b is the
beam width and ra; ca and ka are the density, wave speed and wave number of the air medium,
respectively. Assuming a far field, such that dbc; where d is the reference location at the
intersection of two beams in this case, d 0

H and d 0
V can be approximated as

d 0
HðxÞEd þ ðcH � xÞsin y; d 0

V ðyÞEd þ ðcV � yÞcos y: ð29a;bÞ

Further, d 0
H and d 0

V in the denominator of the integrand can be replaced by its approximate value
d but not for the exponent in order to maintain the phasing relations [31]. Here, the sound field in
the second quarter of Fig. 3(c) is described by a superposition of two independent hemi-spherical
spaces corresponding to the horizontal and vertical baffled beam radiators, as shown in Fig. 3.
Note that the Green’s function for a 3

4
free space is needed to describe the exact sound field and

hence there may exist a discrepancy between the realistic sound field and the one described here
especially at lower frequencies. Consequently, this study focuses on relative measures of two
different systems, such as the insertion loss, and accordingly it is assumed that such discrepancies
are negligible especially in the sound field located 45� from the corner of the beams. Yet, a more
general case that employs an inverted ‘L’ plate and describes a three-dimensional sound field is
investigated via computational and experimental studies in Section 5. Therefore, sound pressure
contributions from beams H and V are

p ¼ pH þ pV ; ð30aÞ

pH ¼
jracakacp;H

4pd
ej½ot�kaðd�cH Þ�

Z cH

0

vH;yðxÞejkax sin y dx; ð30bÞ

pV ¼
jracakacp;V

4pd
ej½ot�kaðd�cV Þ�

Z cV

0

vV ;xðyÞejkay cos y dy: ð30cÞ

Here, vH;y and vV ;x are the flexural velocities of beams H and V ; respectively. Sound pressure from
beam H is determined as follows where G is a row vector:

pH ¼
jracakacp;H

4pd
ej½ot�kaðd�cH Þ�½GH1;3F3 þGH2;3F3 þGH1;4F4�; ð31aÞ
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GH1;3 ¼ ½AH1;vx
ðx3Þ AH1;vy

ðx3Þ AH1;qz
ðx3Þ �gH1;A

þ ½BH1;vx
ðx3Þ BH1;vy

ðx3Þ BH1;qz
ðx3Þ �gH1;B; ð31bÞ

GH2;3 ¼ ½AH2;vx
ðx3Þ AH2;vy

ðx3Þ AH2;qz
ðx3Þ �gH2;A

þ ½BH2;vx
ðx3Þ BH2;vy

ðx3Þ BH2;qz
ðx3Þ �gH2;B; ð31cÞ

GH1;4 ¼ ½AH1;vx
ðcHÞ AH1;vy

ðcHÞ AH1;qz
ðcHÞ �gH1;A

þ ½BH1;vx
ðcHÞ BH1;vy

ðcHÞ BH1;qz
ðcHÞ �gH1;B; ð31dÞ

gH1;A ¼
Z x3

0

½sinðkHxÞ � sinhðkHxÞ�ejkax sin y dx; ð31eÞ

gH1;B ¼
Z x3

0

½cosðkHxÞ � coshðkHxÞ�ejkax sin ydx; ð31fÞ

gH2;A ¼
Z cH

x3

½sin½kHðcH � xÞ� þ sinh½kHðcH � xÞ��ejkax sin y dx; ð31gÞ

gH2;B ¼
Z cH

x3

½cos½kHðcH � xÞ� þ cosh½kHðcH � xÞ��ejkax sin y dx: ð31hÞ

Similarly, sound pressure from beam V is

pV ¼
jracakacp;V

4pd
ej½ot�kaðd�cV Þ�½GV ;4F4�; ð32aÞ

GV ;4 ¼ ½AV ;vx
ðcV Þ AV ;vy

ðcV Þ AV ;qz
ðcV Þ �gV ;A

þ ½BV ;vx
ðcV Þ BV ;vy

ðcV Þ BV ;qz
ðcV Þ �gV ;B; ð32bÞ

gV ;A ¼
Z cV

0

½sinðkV xÞ � sinhðkV xÞ�ejkay cos y dy; ð32cÞ

gV ;B ¼
Z cV

0

½cosðkV xÞ � coshðkV xÞ�ejkay cos y dy: ð32dÞ

Calculated mean-square sound pressures ðC2
pÞ are shown in Fig. 12(a) for four cases. The

horizontal beam is connected to the isolator at 3cH=4 from its clamped end. The field point is
located at d ¼ 1m from the intersection of two beams, at 45� from the outer surfaces of each
beam, as shown in Fig. 3(b). The rank order associated with four locations and related sound
pressure spectral shapes of Fig. 12(a) match the transmitted vibration power spectra of Fig. 11(a)
although discrepancies are observed at some frequencies. Sound pressures at other field
observation points, d ¼ 3m with 45� and d ¼ 1m with 85�, are also shown in Figs. 12(b) and (c).
It is observed from Fig. 12 that the rank orders (corresponding to four isolator locations) at
different sound field observation points do not change, except at some frequencies although their
spectral shapes differ especially beyond 200Hz. Fig. 13 compares insertion losses based on mean-
squared sound pressures ðILc2

p;i�jÞ at a field point (d ¼ d1; y ¼ y1) with the ones of vibration power
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input ðILP;i�jÞ to the ‘L’ beam for the four isolator cases of Fig. 2(d) given the moment excitation.
Here, subscripts i and j denote mount cases as shown in Fig. 2(d). Spectral averages of the
insertion losses (ILc2

p;SAvg and ILP;SAvg) are also compared in Fig. 13. Fig. 13 shows that the ILc2
p

spectra closely represent the ILP curves although some discrepancies between ILc2
p;4�1 and ILP;4�1

(cases 4 and 1) are observed. This suggests that ILc2
p;i�j may not be equal to ILP;i�j when systems i

and j transmit different vibration components. Note that the rotational and axial components
dominate the vibration transmission for cases 1 and 4, respectively. Therefore, in such cases,
correlations between ILc2

p
and ILP could be enhanced by averaging sound pressures over the

entire field.
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5. Experimental system with an inverted ‘L’ plate receiver

5.1. System configuration

Similar to the inverted ‘L’ beam receiver, an inverted ‘L’ plate receiver, as shown in Fig. 14, is
employed to describe both in-plane and out-of-plane motion transmissions to the receiver.
Overall, 4 isolators of Figs. 14(c) and (d) are experimentally studied. The material properties and
dimensions of the source, isolator and receiver are summarized in Table 3. Each isolator is located
at either the center or edge of mass to realize different vibration isolation configurations.
However, the mount location on the receiver side is unchanged. The field point ðx1 ¼ ~dd Þ for sound
pressure measurements pðoÞ is located at a distance of 0.2m from the mating edge of two plates,
at 45� from the outer surfaces. Sound pressures at other field locations ðxÞ and structural velocities
at selected points ðxÞ on the receiver plates are also examined, as summarized in Table 4. Fig. 15
shows the modified experimental schematic used for moment driven responses where a phase
shifter is used. Table 5 lists the instruments used. Measurement are conducted in an anechoic

10
2

10
3

-20

0

20

40

60
IL

 (
dB

)

10
2

10
3

-20

0

20

40

60

IL
 (

dB
)

10
2

10
3

-20

0

20

40

60

IL
 (

dB
)

Frequency (Hz) 

Frequency (Hz) 

1 

2 

4 

3 

(a) (b)

(c)

(d)
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Þ at d ¼ d1; y ¼ y1 and vibration power input ðILPÞ to the

‘L’ beam given moment excitation for four cases as shown in Fig. 2(d). (a) IL2�1 (case 2–case 1) with spectral averages
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——, ILc2
p
; - - - - - - -, ILP: Here, subscript SAvg implies spectral average of corresponding insertion losses.
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room under the sine sweep excitation (up to 3 kHz). In-phase and 180� out-of-phase forces (in y

direction) are separately applied to the edges of the rigid source to simulate the force ðfyÞ and
moment ðqzÞ excitations at G; respectively. Forces from two shakers and accelerations at the
driving point locations are measured using two impedance heads. Plastic and steel stingers are

Fig. 14. Experimental system with an inverted ‘L’ plate receiver, as excited by harmonic forces and moment: (a) system

with rotational free velocity only; (b) system with translational and rotational free velocities; (c) isolator I; (d) isolator

II.

Table 3

Material properties and dimensions of the experimental system of Fig. 13

Property or

dimension

m (kg) E (MPa) G (MPa) Z r (kg/m3) Dimensions (mm)

Source (rectangular

rigid body)

1.2 — — — — c ¼ ½x; y; z� ¼ ½140; 64; 47�

Rubber isolator I — 2.8 0.8 0.2 1000 ceffective ¼ 35 reffective ¼ 12

Aluminum isolator I — 6.688� 104 2.4� 104 0.001 2723 ceffective ¼ 35 reffective ¼ 12

Polypropylene

isolator II

— 5 1.6 0.2 1000 c ¼ 27 r ¼ 7

Aluminum isolator II — 6.688� 104 2.4� 104 0.001 2723 c ¼ 27 r ¼ 7

Inverted ‘L’ plate

receiver

— 19:5� 104 8:3� 104 0.001 7700 c ¼ 400 t ¼ 1 (square

horizontal and vertical

plates)

Note that rubber and polypropylene properties are approximate.
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Fig. 15. Experimental schematic for the source characteristics study of a system with an inverted ‘L’ plate receiver and

sound radiated from receiver plate.

Table 4

Locations of vibration transmission measures

Location no. Measure Co-ordinates (m) ‘L’ structure location

x1 Sound pressure x ¼ 0:14; y ¼ 0:14; z ¼ 0 Acoustic free field

x2 Sound pressure x ¼ �0:18; y ¼ 0:46; z ¼ 0 Acoustic free field

x3 Velocity x ¼ �0:15; y ¼ 0; z ¼ 0 Horizontal plate

x4 Velocity x ¼ 0; y ¼ �0:15; z ¼ 0 Vertical plate

Table 5

List of instruments used for experimental studies

Item Manufacturer Model no.

Accelerometers PCB A353B66

Microphones PCB L130C10

Impedance heads PCB 288D01

Shakers Labworks ET-132-2

Phase shifter AVC Instrumentation 780M01

Power amplifiers Electro-Voice 7300A

Dynamic signal analyzer (8 channel) with signal generator HP HP3566A
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used over low (up to 1 kHz) and high (1–3 kHz) frequency regimes, respectively, since the dynamic
forces could not excite the system above 1 kHz with plastic stingers. Typical force signals are
shown in Fig. 16. The input forces with almost the same magnitudes and 180� (or 0�) phase
difference are maintained throughout the experiments for moment (or force) excitation cases as
shown in Fig. 17. However, the phase between two forces deviates slightly from 180� (or 0�) at a
system resonance (approximately 600Hz). This resonance appears to be a result of the
experimental system dynamics with two shakers. Forces measured at the driving point locations
are used for computational predictions.
The mobilities of the inverted ‘L’ plate structure are obtained by using a commercial finite

element (FEA) IDEAS [33] code. Further, interfacial forces and moments between the isolator
and receiver are calculated by synthesizing the mobilities of the inverted ‘L’ plate, source and
isolator. Then, the plate velocity distribution from the FEA calculation is provided to a
commercial boundary element method (BEM) SYSNOISE [34] code to predict the sound
radiation. Individual sound fields generated by each plate for interfacial forces and moments are
superimposed to determine the resultant sound pressure. Note that direct radiation from either
source or isolator is not included in such calculations. Overall, sound pressure and velocity
amplitudes at locations of Table 4 are obtained using the FEA and BEM methods. Vibration
power ðPTRÞ transmitted to the ‘L’ plate and the power ðPRADÞ radiated to the acoustic medium
from the receiver, as defined below, are also predicted:

PRAD ¼
1

2

Z
A

pv	a dS: ð33Þ

Here, p and va are sound pressure and the particle velocity amplitudes, respectively, at a control
surface S [17,32].

5.2. Effect of isolator material

The effect of isolator material properties is quantified in terms of insertion losses ðILÞ:
Sound pressure ðpÞ; vibration velocity ðvÞ and acoustic power ðPRADÞ are calculated, where,
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Fig. 16. Typical force input to the mass source. (a) Force magnitude: ——, mount located at the edge of source;

– - – - – -, mount located at the center of source. (b) Relative phase between two force inputs. ——, moment excitation;
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in dB,

ILpi
¼ 10 log10

C2
pi ;A

C2
pi ;B

 !
; ILvj

¼ 10 log10
C2

vj ;A

C2
vj ;B

 !
; ð34a;bÞ

ILPRAD
¼ 10 log10

PRAD;A

PRAD;B

	 

: ð34cÞ
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Fig. 17. Vibration isolation measures on mount material effect for isolator I given force excitation: (a) insertion loss

ðILPRAD
Þ of acoustic power radiated from the ‘L’ plate receiver; (b) mean-square sound pressure ðC2

pÞ at location x1 of

Table 4 with mount configuration of Fig. 14(a); (c) insertion loss ðILpÞ of sound pressure at field location x1; (d) ILp at

location x2; (e) insertion loss ðILvÞ of velocity at plate location x3; (f) ILv at location x4: ——, calculated; �, measured;

???; background noise from shakers. Results are given in terms of 1/3 octave band center frequencies from 31.5 to

2500Hz. Only the mean values within each bandwidth are plotted here.
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Here, pi and vj are sound pressure at acoustic field point i and velocity at receiver structure location j;
respectively. Further, ‘A’ and ‘B’ represent the system with an aluminum and rubber (or
polypropylene) isolator, respectively. The ILp and ILv spectra are obtained from both experimental
and computational studies but only the computed results are used for ILPRAD

: The results are given at
the center frequencies of the 1/3 octave band. Each isolator of Figs. 14(c) and (d) is separately
examined and the mount location is unchanged for all cases. Experimental and computational results
at the response locations ðxÞ of Table 4 are shown in Figs. 17 and 18 for isolators I and II, respectively,
when force ðyÞ is applied at the mass center of a rigid body source. Further, the measured force inputs
are used for computational studies. Resulting vibration and acoustic measures cannot be normalized
with respect to their excitation forces since two different input forces are used. However, it is observed
that measured input forces from the shaker stingers to a mass source do not vary much given different
system configurations. Figs. 17 and 18 show that vibration and noise transmissions are much reduced
over a wide range of frequencies when a rubber isolator with a lower G is used in place of an
aluminum isolator. Further, ILPRAD

spectra for sound power radiated from the ‘L’ plate receiver
match well with the ILp spectra for sound pressure, especially at location x1: However, the experiment
results of ILp do not exhibit as much reduction as the ones computed beyond 500Hz. One of the
reasons is that the actual sound radiated from the receiver is lower than shaker noise beyond 500Hz,
especially when a rubber isolator is located at the center of source. See Figs. 17(b) and 18(b) where the
background noise from shakers is also shown with mean-square sound pressure ðC2

pÞ: Note that the
measured C2

p of the system shows almost the same level as the C2
p of shakers as shown in Figs. 17(b)

and 18(b). Further, note that ILv spectra, that are not contaminated by shaker noise, are much higher
than ILp beyond 500Hz as shown in Figs. 17(c), (d) and 18(c), (d). Observe that the ILv from
experiments reasonably match with predicted ILv as shown in Figs. 17(e), (f) and 18(e), (f). However,
relatively large discrepancies between measured and predicted insertion losses are observed for isolator
II of Fig. 18 at some frequencies, say 250–800Hz. One reason for this may be the interfacial
conditions of the isolators. For example, the polypropylene isolator (II) is connected through a plastic
thread with the receiver plate and source mass, unlike the other three isolators. Also, refer to Fig. 14
for isolator shapes and material, and note that the rubber isolator I has aluminum interfacial plates at
both ends of the isolator, unlike isolator II. Therefore, errors in the measurements of insertion loss,
which compares the polypropylene and aluminum isolators (II), may be pronounced for isolator II.
Yet, the elastomeric non-linearities could introduce other errors. For example, the polypropylene
isolator (II) could have preload and amplitude dependencies and could exhibit spectrally varying
material properties, unlike metallic mounts. Note that we have assumed spectrally invariant properties
for the four isolator examples. Spectral averages of measured and computed results are shown in
Table 6 for insertion losses. Overall, reasonable agreements between computed and experimental
results are observed even though some measurements are contaminated by the shaker noise. Further,
the root cause of the relatively larger discrepancies for some isolators (for example, the polypropylene
isolator case), which may be due to interfacial conditions and/or elastomeric non-linearities, needs to
be further studied.

5.3. Effect of isolator location

Next, the effects of mount location are examined using the experimental system of Fig. 14. Only
the rotational free velocity of the source should exist for the moment excitation case when a
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mount is located at the center of the mass source. And, both translational and rotational free
velocities occur when the isolator is placed at the edge of the rigid body source [12]. Similar to the
previous cases, insertion losses ðILÞ are calculated by using Eqs. (34a)–(34c). In this case, subscript
‘A’ and ‘B’ refer to the cases when the isolator is placed at the edge and at the center of the mass
respectively. First, consider the rubber and polypropylene isolator (I) cases of Figs. 19(a), (c) and
20(a), (c), where both computational and experimental results show that all vibration and sound
measures are significantly reduced when an isolator is moved from the edge to the mass center.
Like the previous case, measured ILp spectra do not exhibit as much reduction as the ones
computed beyond 500Hz because the actual sound radiated from the receiver is lower than the
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Fig. 18. Vibration isolation measures on mount material effect for isolator II given force excitation: (a) insertion loss

ðILPRAD
Þ of acoustic power radiated from the ‘L’ plate receiver; (b) mean-square sound pressure ðC2

pÞ at location x1 of

Table 4 with mount configuration of Fig. 13(a); (c) insertion loss ðILpÞ of sound pressure at field location x1; (d) ILp at

location x2; (e) insertion loss ðILvÞ of velocity at plate location x3; (f) ILv at location x4: ——, calculated; �, measured;

???; background noise from shakers. Results are given in terms of 1/3 octave band center frequencies from 31.5 to

2500Hz. Only the mean values within each bandwidth are plotted here.
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shaker noise beyond 500Hz, especially when a rubber isolator is located at the center of the
source. Further, similar to the previous case, ILv spectra beyond 500Hz are much higher than ILp

since measured ILv are not contaminated by the shaker noise. Next, aluminum isolators (I and II)
are examined. Figs. 19(b), (d) and 20(b), (d) show that vibration and acoustic measures are
reduced by connecting an aluminum mount at a source location with zero translational free
velocity. However, the aluminum isolator cases show less reduction when compared to the rubber
or polypropylene isolator case. Further, it is observed in Figs. 19(b) and (d) that measured ILp

values exhibit a reasonable match with computed ILp since the sound pressures with an aluminum
mount are higher than the shaker noise level. Similar to the mount material case, spectral averages
of the measured and computed insertion losses are again shown in Table 6. It is observed that
significant reductions in vibration transmission, based on mount locations, are identified by using
sound pressure measures for a system with Rubber I or Polypropylene II isolator. Velocity
measures at selected locations also provide large reductions in vibration transmitted to a receiver,
as seen from Table 6. Further, some reductions in velocity and sound measures are observed for a
system with an aluminum isolator. Like the previous case, reasonable agreements between
computed and experimental results are observed even though some measurements are
contaminated by the shaker noise as discussed before.

Table 6

Spectral averages of insertion losses for the experimental system of Fig. 13

Effect Measure (mean-square value) Isolator Computation (dB) Experiment (dB)

at x1 at x2 at x1 at x2
or x3 or x4 or x3 or x4

Isolator material

given force

excitation

Velocity ðC2
vÞ at x3 or x4 Isolator Ia 8 9 7 11

Isolator IIb 10 11 3 5

Sound pressure ðC2
pÞ at x1 or x2 Isolator Ia 15 13 10 9

Isolator IIb 17 17 6 7

Isolator location

given moment

excitation

Velocity ðC2
vÞ at x3 or x4 Rubber Ic 22 22 20 18

Aluminum Ic 7 4 11 6

Polypropylene

IIc
25 26 24 24

Aluminum IIc 9 5 11 12

Sound pressure ðC2
pÞ at x1 or x2 Rubber Ic 21 22 15 15

Aluminum Ic 7 8 7 8

Polypropylene

IIc
24 25 20 20

Aluminum IIc 7 9 10 11

aBaseline for insertion loss calculation is System with Rubber isolator I.
bBaseline for insertion loss calculation is System with Polypropylene isolator II.
cBaseline for insertion loss calculation is System with a mount located at the center of the mass source.
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6. Conclusion

6.1. Summary

Several measures of vibration isolation performance have been critically examined for a multi-
dimensional system with inverted ‘L’ structure receivers. Non-dimensional components of multi-
dimensional transmissibilities and effectivenesses are comparatively evaluated for an inverted ‘L’
beam receiver and four source configurations. Radiated sound pressures resulting from both in-
plane and out-of plane motions of the ‘L’ beam receiver, have also been calculated and correlated
with power-based measures. Further, vibration power components transmitted to the ‘L’ beam
receiver and their interactions have been analyzed. Our analysis shows that significant couplings
occur between different degrees of freedom. In order to efficiently interpret transfer paths of
inherent complexity, several measures have been examined. Sound measurements and predictions
for the inverted ‘L’ plate demonstrate that a rank order based on free field sound pressures, at one
or more properly selected points, could be regarded as a measure of the vibration power
transmitted to the receiver. Measured insertion losses for sound pressure match well with those
based on computed results, especially on the basis of spectrally averaged values. Finally, the
effects of interfacial conditions and elastomeric non-linearities need to be further studied.
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6.2. Emerging research issues

Properties of elastomeric and hydraulic isolators typically show frequency dependency and are
sensitive to preload and dynamic excitation levels [2,3]. In order to properly predict the isolation
behavior of such non-linear systems, one must question the use of measures that are typically
derived based on the linear system theory [35]. Several experimental methods have been developed
to characterize the stiffnesses of an isolator. Direct force measures have been pursued by
simulating ideal boundary conditions [36,37] but such approaches are limited to lower frequencies
since the unwanted dynamics of the measurement machine is involved as the frequency increases
[36]. Recently, some approximate methods that are based on motion transmissibilities have also
been developed [38–41]. However, alternate laboratory measurement methods need to be
correlated using appropriate isolation measures.
Simplified isolator models are often employed to describe the dynamic behavior of vibration

isolation systems [3,5,11,15,16,42]. These are often longitudinal spring models [3,5,11] though
some models include flexural components with or without the cross-axis coupling terms [15,16,42].
However, it is known that the rotational component becomes important and standing wave effects
occur within an isolator as the frequency increases [1,4,42]. Therefore, more advanced isolator
models are needed to properly describe couplings among multiple and/or multi-dimensional
transmission paths [12,24–27]. Both driving and transfer point stiffnesses must be known to
properly interpret isolator measures.
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Several efforts have been made to quantify the contribution of source to vibration transmission
to a receiver [12,23–27]. One may introduce a source descriptor along with an effective mobility
concept to quantify the source contribution [23–27]. Further, the role of free source velocity on
vibration transmission has been emphasized [12] and recently a ‘‘pseudo-force’’ method has been
developed to simulate the free velocities of a source [43,44]. However, a more appropriate
quantification of source strength is still required and dynamic interactions between sources and
paths would need further investigation, especially in the presence of compliant vibration sources.
Finally, future work is required to properly interpret coupling phenomena and to develop efficient
transfer path measures for ‘real life’ systems that incorporate multiple isolators. Efforts are also
needed to identify appropriate measures for structure-borne and airborne noise paths over a
broad range of frequencies.
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Appendix A. Nomenclature

A;B;C;D arbitrary constants
b width
c wave speed
d distance to sound observation point from reference
E Young’s modulus
f force amplitude
f force amplitude vector
F excitation
F excitation vector
g function for sound pressure
G shear modulus
G function vector for sound pressure
h reference location in rigid body with respect to mass center
IS area moment of inertia
Im mass moment of inertia
I identity matrix
IL insertion loss
j

ffiffiffiffiffiffiffi
�1

p
k wave number
c length
m mass
m inertia matrix
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M mobility
M mobility matrix
p sound pressure
q moment amplitude
q moment amplitude vector
Q numerical constant for rubber material
R rotation matrix for the cross vector product
r radius
S area
S;P;R source, path and receiver
t thickness
T transformation matrix
T shape factor
TR transmissibility
TR transmissibility matrix
v translational velocity
v translational velocity vector
V velocity
V velocity vector
w rotational velocity
w rotational velocity vector
X displacement in x direction
Y displacement in y direction
X generalized co-ordinate vector
x; y; z cartesian co-ordinates
a; b; g mobilities of components
a; b; c mobility matrices of components
G structural power efficiency
Z loss factor
y rotational displacement
x response location
X effectiveness
N effectiveness matrix
P vibration power (time-averaged)
r mass density
C mean-square
o frequency, rad/s

Subscripts

a air
A axial (power)
B flexural motion or bending (power)
G mass center
H horizontal beam or plate
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IN input
i; j indices or reference points in mass
c lateral (power)
L axial or longitudinal motion
p perimeter
Q variable
R rotational
RAD radiated
S;P;R source, path and receiver
SAvg spectral average
TR transmitted out
V vertical beam or plate
w rotational component of mobility matrix of rigid body
W weighted
WF weighted force
WV weighted velocity
with with isolator
without without isolator
x; y; z cartesian co-ordinates
1, 2, 3, 4 reference locations

Superscripts
b blocked
f free
T transpose
B complex valued
: time derivative
	 complex conjugate

Operators

diag diagonal matrix
Re real part
/S time-averaged
= quotient for matrices
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